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Abstract—To extend the well-known solution of laminar flow in a flat duct to the case of unequal wall
temperatures requires the determination of an additional set of eigenvalues and functions, the first

eight of which were determined by computer.

The Nusselt numbers do not become constant, in this case, until a linear temperature gradient is
established in the fluid, and this requires very long entry lengths. The entry lengths also depend on
the magnitude of the entry temperature in relation to the values of the wall temperatures.

NOMENCLATURE

a, coefficient in series expansion;

A, B, C, constants defined in text;

K, thermal conductivity of fluid;

k, wall temperature constant defined
n text;

Nu, Nusselt number;

Pr, Prandtl number;

q, Heat-transfer rate;

Re, Reynolds number, 4u,,y./v;

t, fluid temperature;

u, fluid velocity;

X, function of x;

X, normalized co-ordinate in flow
direction;

x',y', 7', cartesian co-ordinates;

¥, normalized co-ordinate perpendi-
cular to wall;

Y, function of y.

Greek symbols

a, thermal diffusivity of fluid;

A, eigenvalue;

8, normalized temperature;

v, kinematic viscosity.

Subscripts
a, value at one wall;
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b, value at other wall;

E, even function of y;

fd, fully developed temperature distri-
bution;

m, mean value;

n, eigenvalue number;

0, odd function of y;

WM, arithmetic mean of wall tempera-
tures.

INTRODUCTION

THE problem is treated as one of steady-state
heat transfer to or from a one-dimensional flow
of fluid between infinite parallel flat walls in
laminar flow with an established velocity profile.
Consider cartesian co-ordinates x’, )’ and z’
(see Fig. 1); x’ is the centre-line co-ordinate in
the flow direction, and y’ and z’ lie perpendi-
cular and parallel to the walls, respectively.
The equation for steady heat conduction in the
fluid with negligible dissipative effects may be
written:

ot e | v o
A P R

In this paper, two-dimensional heat transfer
in the xy-plane is considered, and all derivations
with respect to z are taken as zero. Heat con-
duction in the flow direction is assumed to be
negligible, and consequently 9%/0x"? is neglected
by comparison with 9%¢/0y’2.
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FiG. 1. Co-ordinate system.

Equation (1) now becomes

ot 0%t
U = gy

oy ®

If uniform fluid properties are assumed, the
velocity profile may be expressed as:

3 P'\2
v=m 1= ()]
where y, = — y, is the distance from mid-stream

to the wall. Now if we put y = y'/y, and
x = x'/Re - Pr-y,, equation (2) may be re-

()

written for uniform fluid properties as:
3 ot o
_ — Ry —
O “)

Equation (4) together with prescribed bound-
ary conditions may be used to determine the
temperature distribution in the fluid. Graetz
[1, 2] published a solution of the corresponding
equation for laminar flow in a straight circular
tube, which involved separation of variables in
x and y resulting in an eigenvalue problem. This
method has since been applied to laminar flow
between parallel walls by several authors [3-6].
However, the interesting case of heat transfer in
the thermal entry region for laminar flow be-
tween parallel walls at uniform but unequal
temperatures does not appear to have been
investigated. It can be regarded as the limiting
case of heat transfer in an annulus with uniform
unequal wall temperatures and radius ratio of
unity. It will be seen that such a problem in-
volves two distinct sets of eigenvalues related
to odd and even sets of eigenfunctions, re-
spectively.
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BOUNDARY CONDITIONS AND NORMALIZED
TEMPERATURE FUNCTIONS

The boundary conditions for equation (4) are:

Wt=1, —1<<y<<+1l —~ao<x<0
(i) r=t, y=++I 0<x<{+w
(i) t =1, y=—1 0=Sx<+w

V) t=t,0) —1<<y<+1 x= 4o
where 7, is the initial fluid temperature and
tra(y) is the fully developed temperature profile
(see Fig. 2). Introducing the normalized tem-
perature,

f =
T, — twnmr

where twum = (¢, -+ 1,)/2, § may be expressed
as the sum of a fully developed temperature
distribution which is a function of y alone and
an entry temperature distribution which is a
function of x and y

g = 91 -+ 92 (5)
where
trg — twm
01 —_ fa WM
o — twm
and
t— 1
By = - d_
ty — twm

since &, is a function of y alone and equation {4)
is linear in ¢, it is possible to write:

2
™o, (6)

Wallt B

Fic. 2. Typical temperature profiles.
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The solution of equation (6) is 8, = Ay + B,
the boundary conditions are 4, =1 when
y =1, and §; = —1 when y = —1, giving

6, = y. Q)
Defining a constant,
— IWM
k= t - tWM

the boundary conditions for 8 and 6, become:

(@ o=~k b=k —y
—1 Ly +1 —wo<x<0
) 8=k =%k —y
-1 <y<+1 x=0
(i) ¢ =1 6, =0
y =+l 0<x<+o0
(iv) 8 = —1 6, =0
y=-—1 0<x< 4w
—1<y +1 x = 4 o0,
From equation (4), 6, may be expressed as
3 20, o0,
— PR S .
g =Ml =57 ®)
SOLUTION

To separate the variables in x and y for
equation (8), we put

b, = XY
where X is a function of x only and Y a function
of y only; this gives:
3 1dx 1
8 X dx

_ ey
A=Y A

The solution for X with boundary condition
(v) for 8, is

— A2,

X = exp (— 8A%x/3)
and the equation for Y is

2
TitNI-mY=0. O

Equation (9), together with the boundary
conditions for 6, constitute a Sturm-Liouville

system which may be solved for discrete values
of A called characteristic values or eigenvalues.
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The resulting functions of y (eigenfunctions)
may be even or odd in y, and two distinct sets
of solutions may therefore be noted:

(1) Even eigenfunctions ¥z1, Yge... Yenand
the corresponding eigenvalues Agi, Ags . . .
AEn.

(2) Odd eigenfunctions Yp1, Yoz . . . Yon
and the corresponding eigenvalues Agy,
Aog “ s /\On-

The solution for 8, is:
Z CE" YEW’ exp ( 8 Eu‘x/s)

+ 3 Con Yon exp (— 8X2,x/3)

=1

(10)

where Cg, and Co, are constants to be deter-
mined from the boundary condition (ii) for 6,.
From the properties of the Sturm-Liouville
system,
JL, 8(x = 01 — y*) YEn dy
o =y Y;,dy
kL. (0~ y)YE.dy
~a e
Ly =) YEady
LU=y, dy
_ liig(l —~ )Y, dy an
T =Y, dy
since the product y Y&, is an odd function of y;
also

CEn =

JL, 0(x = 0)(1 — y*) Yon dy
L =Y, dy
iy =M Yondy
T A =hr.dy (a2

since Yo, is an odd function of .
Integrating equation (9) from 0 to 1 for an

even eigenfunction gives:
d YE@
5[5,

i =)D Y dy =
Multiplying equation (9) by y and integrating
from 0 to 1 for an odd eigenfunction gives:

1 [dYon
1] — 32 Ynd = — e " . 14
Ji y(1 — y) Yondy ,\2[ dy L=‘ 14

Con =
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Graetz [2] showed that alternative expressions
for the denominations of (11) and (12) may be
obtained. From equation (9) it follows that, for
any solution Y,

JdY ¢y y é '8}’)
e~ Vol o)),
— 20 J1(1 — ) Ydy.
If Y be an eigenfunction then Y =0, y = | and

1 [oY, @Y,
2 2
1 —®Y2dy = ZA[ ayL,‘ (15)
It follows from (11), (13) and (15) that
2k
Con = = @ Ymitrgy, ., 1O
and from (12), (14) and (15) that
2
COn = (17)

Aon(@You[Ehon), - |

NUSSELT NUMBERS
Expressions for the Nusselt numbers at each
wall may now be derived. If a sign convention
is adopted to give positive heat-transfer rates
and Nusselt numbers at both walls for x = oo,
then the heat-transfer rate from wall a to the
stream is given by

K(E«’?)
e = ay’f y=ye

and from the stream to wall b is given by

K ( 81‘)
= 83’!, 3= +y’»‘

The Nusselt number for wall ¢ may be written

9a 4.
to—tm K

Nuy ==
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where 1, is the bulk mean temperature of the
fluid ;

fitudy
f,,,,_ = ORIy
{Hudy
Alternatively
Nt = 4 dé 18
“wrealw).,  ®@
where
ftibudy
’m—“‘j 1ui:ly' (19)

In the same manner, the Nusselt number at
wall » may be written:

@& 4y,
Nub = }m - tb. ?‘
hence
Nito = 4 dé
Uy =g (a‘y)y IR

From equations (3) and (19) the normalized
bulk mean temperature may be written

3
O = 5 JL16(1 — »%) dy.

Substituting for # by means of equations (5),
{7), (10}, (13) and (16) gives the final expression
for the normalized bulk mean temperature:

Sm 1 (0YEd/0y)y—1

0, = 3k e e LTIV TR
Ly )‘1‘;, (© YEn/a’\EW)y:1
A==

exp (— 8A;x/3) (2D

since integrals of odd functions from y = +1
to y = —1 dre zero. Final expressions for the
Nusselt numbers may now be written, with the
aid of equations (5), (7), (10), (16-18), (20) and
(21), as:

Nu, =

x<
1 (0YEa/8V)y=1
-2k Z PV € 7w v

n=1

2 m‘—\ 1
oW (~ B +2 D 1 e

0 Yon/0y)y = ;
o=l oxp (— 83,509

® =1

1 3k Z (a YEn/ay)y =1
Eu (a YEﬂ/a YE”)KI =1

exp (— 8a%,x/3)
(22)
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Nub =
(aYE”/ay)y =1
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1 (aYO”/ay)yz—-l

[e¢] 0
1 2
— ) — — — 8A%.x/3
1 + 2k Z/\En (aYEﬂ/aAEn)y=l exp ( SAEnx/3) + 2 ZAO” (aYO”/ay)y:sl exp( wa/ )

n=1

n=1

«©

1 3k b (OYeal%)y
2t 7 XL, (0YEn/0AEn), —1

n=1

exp (— 822,x/3)

23)

since
0YEn . ?YEn
( oy >y=1 __( oy )y=—l
and
3Y0n . _aYOn)
( oy )y:l B ( W Jy=-1
CALCULATION

From the foregoing it can be seen that the
solution requires computation of

Ens Ons —_é}_y:l, 6y y=1,

aYEn aYOn
ax ),_ Tax ),y

Graetz [1] expressed the eigenfunctions for
the round tube as infinite power series. The
eigenvalues appeared as the roots of a given
series. Successive terms in the series were of
different sign and the calculation of the roots
became very laborious after the first three.
Prins et al. [5] give the first three even eigen-
values for the flat-duct case and the related
derivatives. Schenk and Dumore [6] present
the first five values. Sellars ef al. [7] extended
the solution to the case of uniform heat input
and gave approximations to all the eigenvalues.
Brown [3] applied an electronic computer to
both the round-tube and flat-duct case and
calculated by the series method to a high degree
of accuracy using fifty significant figures. He
obtained the first ten eigenvalues and derivatives.

The present authors carried out their com-
putation on the Manchester Mercury Computer,
and in view of the extreme precision necessary
in the above method it was considered simpler
to integrate equation (9) from y =0to 1 on a
step-by-step basis for trial values of A with the

Runge-Kutta method. Two hundred equal
steps were taken with variables:
_dy d (dY
N = a_; s Ve = 'd—A

dYy

Y;y3=a—; sVe= g3

The corresponding equations for integration
are:

dyl_ 2, 2,2
a;———)\(l“‘}’)}’

dy =

& =~ == 20 =

E =JY3
and the boundary conditions at the starting
point y = 0 are:
for Y=Yg: =0, »=1, y,=0, y,=0;
for Y="Yo: n=1 3=0, y3=0, y,=0.

RESULTS
The first eight values of

d YE'n, d YOn
AEn, AOn, (-d”/\—)y ) (_(‘ﬁ*)y L

(dYEn) and (dYon)
dy y=1 ay y=1

are given in Table 1 for Yrand Yo <1 X 108,
respectively, at y = 1. The even eigenvalues are
compared with those reported by Brown [3] in
Table 2. Curves of Nu, and Nu, against x are
presented for values of k of 0, 1, 2 and 3 in
Fig. 3.
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Fic. 3. Variation of Nusselt Number along duct.

Table 1. Eigenvalues and derivatives

(=)
ﬁf:‘y y=1

()
oA v

n AEn
1 1-681595 — 1429156  — 0990437
2 5-669858 3-807069 1-179107
3 9-668243 — 5920236  — 1-286249
4 13-66766 7-892533 1-362019
5 17-66738 — 9770940  — 1-421324
6 21-66722 11-57980 1-470396
7 25-66714 — 13-33385 — 1-512447
8 29-66710 15-04291 1-549358

( &Yon ) ( Y on )
n Aon ey Jv= X Ju=r
1 3-672290 — 0-7144592  — (0-2951278
2 7-668809 06345106 0-1608078
3 11-66790 — 05920333 — 0-1135084
4 15-66750 0-5637611 0-08883561
5 19-66729 — (-5428368  — 0-07352136
6 23-66717 0-5263594 0-06301967
7 27-66711 — 05128434  — 0:05533502
8 31-66710 0-5014311 0-04944843

Table 2. Even eigenvalues calculated by Brown [3]

AE‘n
1-6815953222
5:6698573459
9-6682424625

13-6676614426
17-6673735653
21-6672053243
25-6670964863
29-6670210447

O~ N Bl N —

CONCLUSIONS

Table 1 shows that the odd eigenvalues take
values which are approximately half-way be-
tween those of the even eigenvalues. The even
eigenvalues approximate closely to those re-
ported by Brown [3].

Sellars et al. [7} gave an expression for the
asymptotic, even eigenvalues. A slight modifica-
tion to their work shows that the eigenvalues,
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where j is the number of times the function
vanishes in the interval between y = — 1 and
—+ 1. Thus, for the even eigenvalues j is 0, 2, 4,
etc., and, for the odd, jis 1, 3, 5, etc.

The heat transfer in the entry length is more
complicated than in the corresponding case with
equal wall temperatures. In the latter, the
transverse temperature profile is the same shape
for all values of x which are sufficiently large
for the influence of the second and higher even
eigenfunctions to be negligible. This gives a
Nusselt number which is uniform along the
length of the duct after the development length,

that 1 ft 3
that is after the influence of the second even

eigenfunction has died away. The present study
indicates that this does not occur with unequal
wall temperatures. The final condition at
x = - co for this case is given by the simple tem-
perature distribution, § = y with Nu, = Nu, =4,
and it is necessary for the influence of all
even and odd eigenfunctions to die away before
this is reached. Very long lengths of duct are
therefore necessary for an established temperature
distribution and uniform Nusselt numbers to
oceur.
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For the special case of k=0, only odd
exgenfunctlons are involved and Nu, = Nub for
all x. The length of duct necessary to obtain
an established temperature profile is shorter
than for the other values of & studied.

Infinities and zeroes occur when x > 0 in Nu,
if1<<k< ooand in Ny if —o0 < &k < —1L
The Nusselt numbers become infinite when
the bulk mean temperature of the fluid is
equal to the appropriate wall temperature.
Zero Nusselt numbers indicate a change in the
direction of the heat transfer at the corre-
sponding wall. Fig. 3 shows that the values of x
at the infinite and zero Nusselt numbers,
respectively, approach x =0 as &k tends to
unity for Nu, and as k& tends to —1 for Nu,.
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Résumé—Pour étendre la solution de I'écoulement laminaire dans un conduit plat au cas ol les
températures de paroi sont différentes, il faut déterminer un systéme supplémentaire de 8 valeurs
et fonctions; les 8 premiéres ont été calculées 4 I'aide d’une machine électronique.

Dans ce cas, les nombres de Nusselt ne deviennent constant que lorsqu'un gradient de température
linéaire s’est établi dans le fluide, ceci nécessite des longueurs d’entrée trés grandes. Les longueurs
d’entrée dépendent également de Uimportance de la température d’entrée par rapport aux températures

de paroi.

Zusammenfassung—Um die bekannte Losung fiir Laminarstromung in ebenen Kandlen auf den Fall
ungleicher Wandtemperaturen auszudehnen, ist eine Reihe von Eigenwerten und Funktionen zu
bestimmen. Die ersten acht davon wurden auf einer Rechenmaschine ermittelt.

Die Nusseltzahl wird in diesem Fall erst dann konstant, wenn sich in der Fliissigkeit ein linearer
Temperaturgradient eingestellt hat; dieser Umstand erfordert sehr lange Einlauflingen. Dariiber
hinaus hingen die Einlauflingen noch ab vom Verhiltnis der Eintrittstemperatur zur Wand-

temperatur,

Anporamua—YToGHl pasBUTE UMEOUHEeCH B JUTepATyPe pellleHHA 323434d O JAMHHAPHOM
TeYeHHH B [JIOCKOM KaHaJle Ha CJIy4ail, KOTJ& TeMIIEPATypPhl CTEHOK KAHAJA HEOMMHAKOBHI,
TPedyeTca OUPENeNNTh TOMOIHNTENHHYI0 COBOKYIIHOCTD COGCTBEHHEIX SHAYCHUN M GyHKIMH,
nepssie BOCEMb K3 KOTOPHIX OHiiM ONpefeseHH Ha CYETHO-penIaAlouieM ycTpoficTne.

B sTom caydae BeamuumHH uncia Hyccenpra GyAyT nepeMeHHRIME A0 TeX HOP IIOKa He
YCTAHOBHTCHA JMHEHHEI! TeMnepaTypHslil rpaguent. [LIS yeTaHOBIIEHNA TAKOTO TEMIEPATYD-
HOTO HOJA Tpebyeres GosbIIas KIMHA BXOZHOTO YYaCTKA, NPOTAMKEHHOCTE KOTOPOTO 3aBUCHT
TAKHe OT OTHONICHMA BeJHYMHHL TeMOepaTYPEl Ha BXOfe K BeJMINHE TeMIePaTyphl CTEHOK,



