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HEAT TRANSFER IN THE THERMAL ENTRY LENGTH WITH 

LAMINAR FLOW BETWEEN PARALLEL WALLS AT UNEQUAL 

TEMPERATURES 

A. P. HATTON* and J. S. TURTONt 

(Received 3 November 1961 and in revised form 8 January 1962) 

Abstract-To extend the well-known solution of laminar flow in a flat duct to the case of unequal wall 
temperatures requires the determination of an additional set of eigenvalues and functions, the first 
eight of which were determined by computer. 

The Nusselt numbers do not become constant, in this case, until a linear temperature gradient is 
established in the fluid, and this requires very long entry lengths. The entry lengths also depend on 
the magnitude of the entry temperature in relation to the values of the wall temperatures. 

fli, B, C, 

2 
NK 
Pr, 
43 
Re, 
t, 
4 
x 
X, 

x’, Y', z’, 
Y, 

Y, 

NOMENCLATURE 

coefficient in series expansion; 
constants defined in text; 
thermal conductivity of fluid; 
wall temperature constant defined 
in text; 
Nusselt number ; 
Prandtl number ; 
Heat-transfer rate ; 
Reynolds number, 4u,y:/v; 
fluid temperature; 
fluid velocity; 
function of x; 
normalized co-ordinate in flow 
direction; 
Cartesian co-ordinates; 
normalized co-ordinate perpendi- 
cular to wall ; 
function of y. 

Greek symbols 
a, thermal diffusivity of fluid ; 
A, eigenvalue ; 
4 normalized temperature ; 
V¶ kinematic viscosity. 

Subscripts 
a, value at one wall; 
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b, 

2, 

m, 
n, 
0, 
WM, 

value at other wall; 
even function of y; 
fully developed temperature distri- 
bution; 
mean value ; 
eigenvalue number ; 
odd function of y; 
arithmetic mean of wall tempera- 
tures. 

INTRODUCTION 

THE problem is treated as one of steady-state 
heat transfer to or from a one-dimensional flow 
of fluid between infinite parallel flat walls in 
laminar flow with an established velocity profile. 
Consider Cartesian co-ordinates x’, y’ and z’ 
(see Fig. 1); x’ is the centre-line co-ordinate in 
the flow direction, and y’ and z’ lie perpendi- 
cular and parallel to the walls, respectively. 
The equation for steady heat conduction in the 
fluid with negligible dissipative effects may be 
written : 

at 

[ 

a2t 3t a2t 
uz=a a;l;a+~3p+~~ - I 0) 

In this paper, two-dimensional heat transfer 
in the xy-plane is considered, and all derivations 
with respect to z are taken as zero. Heat con- 
duction in the flow direction is assumed to be 
negligible, and consequently a2t/ax’2 is neglected 
by comparison with Pt/ay’2. 
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Y’ i 
Wall A 

I Wall B 

FIG. 1. Co-ordinate system. 

Equation (1) now becomes 

at a=t 
uax; = ap. (2) 

If uniform fluid properties are assumed, the 
velocity profile may be expressed as: 

where y: = - y; is the distance from mid-stream 
to the wall. Now if we put y = y’/yi and 
x = x’/Re * Pr - I(, equation (2) may be re- 
written for uniform fluid properties as: 

Equation (4) together with prescribed bound- 
ary conditions may be used to determine the 
temperature distribution in the fluid. Graetz 
[l, 21 published a solution of the corresponding 
equation for laminar flow in a straight circular 
tube, which involved separation of variables in 
x and y resulting in an eigenvalue problem. This 
method has since been applied to laminar flow 
between parallel walls by several authors [3-61. 
However, the interesting case of heat transfer in 
the thermal entry region for laminar flow be- 
tween parallel walls at uniform but unequal 
temperatures does not appear to have been 
investigated. It can be regarded as the limiting 
case of heat transfer in an annulus with uniform 
unequal wall temperatures and radius ratio of 
unity. It will be seen that such a problem in- 
volves two distinct sets of eigenvalues related 
to odd and even sets of eigenfunctions, re- 
spectively. 

BOUNDARY CONDITIONS AND NORMALIZED 
TEMPERATURE FUNCTIONS 

The boundary conditions for equation (4) are : 

(i) t = t, -I<y<+fl --m<x<o 

(ii) t = f, v=+l 0 <: x <; + ry(l 

(iii) t = tb JJ’__l 0 :< x 2;; + m 

(iv) t = tfd(y) - I :-<_v 5: + 1 x=+m 

where t, is the initial fluid temperature and 
t&) is the fully developed temperature profile 
(see Fig. 2). Introducing the normalized tem- 
perature, 

0 = L: ?!! 
t, - kV 

where ~WM = (t, + tb)/2, 0 may be expressed 
as the sum of a fully developed temperature 
distribution which is a function of y alone and 
an entry temperature distribution which is a 
function of x and y 

e = e, + 8, (5) 

where 

and 

since 8, is a function of y alone and equation (4) 
is linear in t, it is possible to write: 

(6) 

- * c. 0 

---- x = 0 

-._ x 20 

_____.. x = +m 

Wall A 

FIG. 2. Typical temperature profiles. 
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The solution of equation (6) is 8, = Ay + B, 
the boundary conditions are B1 = 1 when 
y = 1, and e1 = -1 wheny = -1, giving 

e, = y. (3 

Defining a constant, 

k= 
To - twiv 
2, - tw&i 

the boundary conditions for B and 0, become: 

(i) 0 = k 8s=k-y 
-1 <yY+l --co<x<o 

(ii) t? = k e,=k-y 
-1 <y< -t-l x=0 

(iii) e = 1 e2 = 0 
y=+l o<x<+co 

(iv) e= -1 e, = 0 
y= -1 O<Xbs-00 

69 e ==Y e2 = 0 
-1 <y<+1 x=+cm. 

From equation (4), 0, may be expressed as 

SOLUTION 

To separate the variables 
equation {8), we put 

e,=xr 

in x and y for 

where X is a function of x only and Y a function 
of y only; this gives: 

3 1dX 1 daY - -- _._- L=: 
8 X dx (1 - y”)Y@ = -“* 

The solution for X with boundary condition 
(v) for e2 is 

X = exp (- 8X2x/3) 

and the equation for Y is 

$-P(l -yy3Y==O. (9) 

Equation (9), together with the boundary 
conditions for e,, constitute a Sturn-Liouville 
system which may be solved for discrete values 
of h called characteristic values or eigenvalues. 

The resulting functions of y (eigenfun~tions) 
may be even or odd in y, and two distinct sets 
of solutions may therefore be noted: 

(1) 

@I 

Even eigenfunctions YEI, YEZ . . . YE% and 
the corresponding eigenVdUeS ~EI, h~z . . . 

AEn. 

Odd eigenfun~tions YOI, YOZ . . . Yen 
and the corresponding eigenvaiues hot: 
Aoz . . I hon. 

The solution for e, is: 

-+- 2 Con Yo% exp (- 8&x/3) (IO) 
n=l 

where CEn and Con are constants to be deter- 
mined from the boundary condition (ii) for 8,. 
From the properties of the Sturm-Liouville 
system, 

CEn _ P-1 @,(x = OH1 - P)Ysn dy -- 
P-1 (1 - u”)Ykdy 

_ &Y 0 - y3Y~n.d~ 

Y-1 (1 - ~3 Y;,s dy 
k j: (1 - y2) YE% dy 

= T(i - y”) Y;, dy (11) 

since the product y Ye, is an odd function of y; 
also 

Con _ P-1 e,(x = OK1 - ~3 Yen dy ____.-....- 
SI-I<1 - u2)Y&dy 

j;y(l - ~“)Yondy = - _.. -____ ___ _ _ 
.fi (1 - ~3 Y:, dy 

since Yen is an odd function of y. 
Integrating equation (9) from 0 to 1 for an 

even eigenfunction gives: 

J; (1 - y”) YES dy = - ; [ ‘21 . (13) 
Y=l 

Multiplying equation (9) by y and integrating 
from 0 to 1 for an odd eigenfunction gives: 

. (14) 
Y=I 
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Graetz [Z] showed that alternative expressions where tm is the bulk mean temperature of the 
for the denominations of (11) and (12) may be fluid: 
obtained. From equation (9) it follows that, for f?: tudy 
any solution Y, f,n = j-$2> * 

Alternatively 
t/=1 

= 2X l;, (1 - p2) Y2 dy. (18) !’ , 

If Y be an eigenfunction then Y = 0, y = 1 and where 

.C (1 - _?>Y:d?, = 2j -ah 
1 i”“~.““1,;_, (I5) 

+ 

It follows from (11). (13) and (15) that 
In the same manner, the Nusselt number at 

wall b may be written: 
2k 

and from (12), (14) and (15) that 

2 ___.- 
Con = x;@Yon/ahon), _ 1’ 

hence 

(17) 
4 d0 

Nub = 1-+e, d> i 1 3,=_,* (20) 

NUSSELT NUMBERS 
Expressions for the Nusselt numbers at each 

wail may now be derived. If a sign convention 
is adopted to give positive heat-transfer rates 
and Nusselt numbers at both walls for x = a. 
then the heat-transfer rate from wall a to the 
stream is given by 

qa =K i 1 & / y’= Y’. 

and from the stream to wall b is given by 

The Nusselt number for wall a may be written 

From equations (3) and (19) the normalized 
bulk mean temperature may be written 

Substituting for B by means of equations (5), 
(7), (IO), (13) and (16) gives the final expression 
for the normalized bulk mean temperature : 

elrl = 3k 

exp (- 8X&~/3) (21) 

since integrals of odd functions from y = tl 
to y = - 1 are zero. Final expressions for the 
Nusselt numbers may now be written, with the 
aid of equations (S), (7), (lo), (16-IS), (20) and 
(21), as: 

Nu, = 

1 _ 2k 
1 (~YOnPYL=l 

Aon (ci YOn/~~On)y =l 
exp (- 8hi,,x/3) 

1 3k 

c 

1 (3 YEla/+)y -1 

--- 4 4 X8 (a YE@ Y,&, =l 
exp (- 8hs*x/3) 

*=l 

W) 



HEAT TRANSFER IN THE THERMAL ENTRY LENGTH 677 

(23) 

since 

and 

CALCULATION 

From the foregoing it can be seen that the 
solution requires computation of 

&, Aon, (F)y=,, (F)y=I 9 

Graetz [l] expressed the eigenfimctions for 
the round tube as infinite power series. The 
eigenvalues appeared as the roots of a given 
series. Successive terms in the series were of 
different sign and the calculation of the roots 
became very laborious after the first three. 
Prins et al. [5] give the first three even eigen- 
values for the flat-duct case and the related 
derivatives. Schenk and Dumore [6] present 
the first five values. Sellars et al. [7] extended 
the solution to the case of uniform heat input 
and gave approximations to all the eigenvalues. 
Brown [3] applied an electronic computer to 
both the round-tube and flat-duct case and 
calculated by the series method to a high degree 
of accuracy using fifty significant figures. He 
obtained the first ten eigenvalues and derivatives. 

The present authors carried out their com- 
putation on the Manchester Mercury Computer, 
and in view of the extreme precision necessary 
in the above method it was considered simpler 
to integrate equation (9) from y = 0 to 1 on a 
step-by-step basis for trial values of h with the 

Runge-Kutta method. Two hundred equal 
steps were taken with variables: 

dY d dY dY 
y1=dy;y2= Y;y,=G dh ;ya=a 

( 1 

The corresponding equations for integration 
are : 

dy, -= 
dv 

- X2(1 - y”)y2 

dyz 
pjy =Yl 

dys -= 
dy 

- h2( 1 - y2)y4 - 2h(l - y2)y2 

dy4 
c =Ys 

and the boundary conditions at the starting 
point y = 0 are: 

for Y = YE: y1 = 0, Y2 = 1, Y3 = 0, Y4 = 0; 

for Y = Yo: yr = 1, y2 = 0, y3 = 0, y4 = 0. 

RESULTS 

The first eight values of 

are given in Table 1 for YE and Yo < 1 x IO-*, 
respectively, at y = 1. The even eigenvalues are 
compared with those reported by Brown [3] in 
Table 2. Curves of Nu, and Nub against x are 
presented for values of k of 0, 1, 2 and 3 in 
Fig. 3. 
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FIG. 3. Variation of Nusselt Number along duct. 

Table 1. Eigenvalues and derivatives 
-__.- ._ -__. -- 

1681595 - 1.429156 
5.669858 3.807069 
9.668243 - 5920236 

13.66166 7.892533 
17.66738 - 9.770940 
21.66722 11.57980 
2566714 - 13.33385 
29.66710 15.04291 

- 0.990437 
1.179107 

- 1.286249 
1.362019 

- 1.421324 
1.470396 

- 1.512447 
1.549358 

n 

1 
2 
3 
4 

: 
7 
8 

B 

h On 

3.672290 
7.668809 

11.66790 
15.66750 
19.66729 
23.66717 
27.66711 
31.66710 

8Y*n 
i 1 -_-- 

s YSl 

- 07144592 
06345106 

- 0.5920333 
0.5637611 

- 0‘5428368 
05263594 

- 0.5128434 
0~5014311 

- 0.2951278 
0.1608078 

- 0.1135084 
0.08883561 

- 0.07352136 
0.06301967 

- 0.05533502 
OG4944843 

Table 2. Even eigenvalues calculahd by Brown [3] 
_^ ._ _- __~__ .- 

77 x< 
I 1.6815c9”53222 
2 5.6698573459 
3 9.6682424625 
4 13.6676614426 
5 17.6673135653 
6 2 1.6672053243 
7 25.6670964863 
8 29.6670210447 

-___ ..- _- ..-- _ ___._” . 

CONCLUSIONS 

Table 1 shows that the odd eigenvalues take 
values which are appro~mate~y half-way be- 
tween those of the even eigenvaIues. The even 
eigenvalues approximate closely to those re- 
ported by Brown [3]. 

Seilars et al. [7] gave an expression for the 
asymptotic, even eigenvalues. A slight modifica- 
tion to their work shows that the eigenvalues, 
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both even and odd, are approximately given by 

Ai = Zj f 5/3 

where j is the number of times the function 
vanishes in the interval between y = - 1 and 
+ 1. Thus, for the even eigenvalues j is 0, 2, 4, 
etc., and, for the odd, j is 1, 3, 5, etc. 

The heat transfer in the entry length is more 
complicated than in the corresponding case with 
equal wall temperatures, In the latter, the 
transverse temperature profile is the same shape 
for all values of x which are sufficiently large 
for the influence of the second and higher even 
eigenfunctions to be negligible. This gives a 
Nusselt number which is uniform along the 
length of the duct after the development length, 
that is after the influence of the second even 
eigenfunction has died away. The present study 
indicates that this does not occur with unequal 
wall temperatures. The final condition at 
x = + CC for this case is given by the simple tem- 
perature distribution, 8 = y with NM, = Nu, = 4, 
and it is necessary for the influence of all 
even and odd eigenfunctions to die away before 
this is reached. Very long lengths of duct are 
therefore necessary for an established temperature 
distribution and uniform Nusselt numbers to 
occur. 

For the special case of k = 0, only odd 
eigenfunctions are involved and Nu, = Nub for 
all x. The length of duct necessary to obtain 
an established temperature profile is shorter 
than for the other values of k studied. 

Infinities and zeroes occur when x > 0 in Nu, 
if 1 <k< 03 and in Nub if ---co < k < -1. 
The Nusselt numbers become infinite when 
the bulk mean temperature of the fluid is 
equal to the appropriate wall temperature. 
Zero Nusseit numbers indicate a change in the 
direction of the heat transfer at the corre- 
sponding wall. Fig. 3 shows that the values of x 
at the infinite and zero Nusselt numbers, 
respectively, approach x = 0 as k tends to 
unity for Nu, and as k tends to -1 for A++,. 

1. 
2. 
3. 
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R&m&--Pour Ctendre la solution de ~~oulement iaminaire dans un conduit plat au cas oh les 
tempkratures de paroi sent diffkrentes, il faut dCterminer un systeme suppICmentaire de 8 valeurs 
et fonctions; les 8 premitres ont &B calcuIBes & I’aide d’une machine tlectronique. 

Dans ce cas, les nombres de Nusselt ne deviennent constant que lorsqu’un gradient de tempkrature 
lidaire s’est &abli dans Ie fluide, ceci nCcessite des longueurs d’entrke trtts grandes. Les longueurs 
d’entr&e dkpendent Cgalement de L’importance de la tem~rature d’entrke par rapport aux temp~~tures 

de paroi. 

Zusammenfassung-Urn die bekannte Lbsung fiir Laminarstriimung in ebenen Kanllen auf den Fall 
ungleicher Wandtemperaturen auszudehnen, ist eine Reihe von Eigenwerten und Funktionen zu 
bestimmen. Die ersten acht davon wurden auf einer Rechenma~hine ermittett. 

Die Nusseltzahl wird in diesem Fall erst dann konstant, wenn sich in der Fliissigkeit ein Iinearer 
Temperaturgradient eingestelit hat; dieser Umstand erfordert sehr lange Einlaufllngen. Dariiber 
hinaus hiingen die Einlaufllngen noch ab vom Verhlltnis der Eintrittstemperatur zur Wand- 

temperatur. 

~~EoT~~~~-YTo~~ pa3BETb ~~~e~~~~ec~ B aEtTepaType pelueaHcr aa~~asa 0 ~aM~HapHoM 
Te9eHxw B ~~IOCKOM KaHaxe Ha enysati, sowa TeMnepaTypbI cTeHoK Havana HeoAaHaHosbI, 
Tpe6yeTcn OIIpeAenPITb AOIIOJIHIdTenbHyIO COBOKyIIHOCTb CO6CTBeHHbIX BHaYeHHti M. $yHK'lHti, 
nep%Me ~oce~b 5x3 1~0TopbIx 6b1n~ onpene3IeHM Ha cs&Two-pemamweM yCTpO&TBe. 

B 3TOM CJlyYae BeJIWiBHbI %ICJla HycCeJIbTa 6yayT nepeMeHH~M~ A0 TeX EOp IIOKa He 
~CTaHOB~TC~ ~~He~~~~ Te~~epaTypH~~ l-pa,l@ieHT. )@Fl yCTaHOBJIeHIlfi TaROr TeMilepaTyp- 
HOFOIlOJSRTpe6yeTCR ciOJIbUIaEJ@IIlHa BXOJ.(HOl-0 yWCTKa,IlpOTX~eHHOCTb KOTOpOl'O 3aBElCHT 

TaKXCe OT OTHOlIIeHIlfl BejIElWlHbI TemepaTyphl. Ha sxoge H BeJlRYHHe TeMnepaTypar CTeHOK. 


